- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Marshall, Nathan (3)
-
Ben-Itzhak, Itzik (2)
-
Bhattacharyya, Surjendu (2)
-
Borne, Kurtis (2)
-
Carnes, Kevin D. (2)
-
Fehrenbach, Charles W. (2)
-
Pathak, Shashank (2)
-
Rolles, Daniel (2)
-
Rudenko, Artem (2)
-
Severt, Travis (2)
-
Venkatachalam, Anbu Selvam (2)
-
Wang, Enliang (2)
-
Ziaee, Farzaneh (2)
-
Boan, Phillip C. (1)
-
Droser, Mary L. (1)
-
Evans, Scott D. (1)
-
Li, Xiang (1)
-
McCandless, Heather (1)
-
Rizzo, Adriana (1)
-
Surprenant, Rachel L. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Ediacara Biota—the oldest communities of complex, macroscopic fossils—consists of three temporally distinct assemblages: the Avalon (ca. 575–560 Ma), White Sea (ca. 560–550 Ma), and Nama (ca. 550–539 Ma). Generic diversity varies among assemblages, with a notable decline at the transition from White Sea to Nama. Preservation and sampling biases, biotic replacement, and environmental perturbation have been proposed as potential mechanisms for this drop in diversity. Here, we compile a global database of the Ediacara Biota, specifically targeting taphonomic and paleoecological characters, to test these hypotheses. Major ecological shifts in feeding mode, life habit, and tiering level accompany an increase in generic richness between the Avalon and White Sea assemblages. We find that ∼80% of White Sea taxa are absent from the Nama interval, comparable to loss during Phanerozoic mass extinctions. The paleolatitudes, depositional environments, and preservational modes that characterize the White Sea assemblage are well represented in the Nama, indicating that this decline is not the result of sampling bias. Counter to expectations of the biotic replacement model, there are minimal ecological differences between these two assemblages. However, taxa that disappear exhibit a variety of morphological and behavioral characters consistent with an environmentally driven extinction event. The preferential survival of taxa with high surface area relative to volume may suggest that this was related to reduced global oceanic oxygen availability. Thus, our data support a link between Ediacaran biotic turnover and environmental change, similar to other major mass extinctions in the geologic record.more » « less
-
Bhattacharyya, Surjendu; Borne, Kurtis; Ziaee, Farzaneh; Pathak, Shashank; Wang, Enliang; Venkatachalam, Anbu Selvam; Marshall, Nathan; Carnes, Kevin D.; Fehrenbach, Charles W.; Severt, Travis; et al (, Physical Chemistry Chemical Physics)We investigate the two- and three-body fragmentation of tribromomethane (bromoform, CHBr 3 ) resulting from multiple ionization by 28-femtosecond near-infrared laser pulses with a peak intensity of 6 × 10 14 W cm −2 . The analysis focuses on channels consisting exclusively of ionic fragments, which are measured by coincidence momentum imaging. The dominant two-body fragmentation channel is found to be Br + + CHBr 2 + . Weaker HBr + + CBr 2 + , CHBr + + Br 2 + , CHBr 2+ + Br 2 + , and Br + + CHBr 2 2+ channels, some of which require bond rearrangement prior to or during the fragmentation, are also observed. The dominant three-body fragmentation channel is found to be Br + + Br + + CHBr + . This channel includes both concerted and sequential fragmentation pathways, which we identify using the native frames analysis method. We compare the measured kinetic energy release and momentum correlations with the results of classical Coulomb explosion simulations and discuss the possible isomerization of CHBr 3 to BrCHBr–Br (iso-CHBr 3 ) prior to the fragmentation.more » « less
-
Bhattacharyya, Surjendu; Borne, Kurtis; Ziaee, Farzaneh; Pathak, Shashank; Wang, Enliang; Venkatachalam, Anbu Selvam; Li, Xiang; Marshall, Nathan; Carnes, Kevin D.; Fehrenbach, Charles W.; et al (, The Journal of Physical Chemistry Letters)
An official website of the United States government
